Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plants (Basel) ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37653931

RESUMO

Over the years, ethnopharmacological and phytochemical investigations have been conducted to understand the potential effects of the Croton genus on several diseases. It has been revealed that these terpenoid-rich species traditionally used to treat gastrointestinal diseases, heal wounds, and relieve pain have a wide range of therapeutic effects; however, those used to treat diabetes, as well as their action mechanisms, have not been reviewed so far. Therefore, the main objective of this review was to compile all Croton species that have shown pharmacological effects against diabetes and describe their action mechanisms. Through a search of the literature, 17 species with hypoglycemic, antihyperglycemic, antilipidemic, antihypertensive, antioxidant, and anti-inflammatory effects were found. Among the mechanisms by which they exerted these effects were the inhibition of α-glucosidases, the promotion of insulin secretion, and the increase in glucose uptake. Interestingly, it was found that some of them may have antihyperglycemic properties, although there were no ethnopharmacological reports that support their traditional use. Moreover, others only presented studies on their hypoglycemic effect in fasting, so further works are encouraged to describe the mechanisms involved in lowering fasting blood glucose levels, such as hepatic glucose production, especially for C. cajucara, C. cuneatus, C. gratissimus var. gratissimus, C. guatemalensis, and C. membranaceus. It is expected that this review contributes to the plant science knowledge of the genus, and it can be used in future references on the identification and development of new molecules/phytomedicines that help in the treatment of diabetes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36408348

RESUMO

Chronic hyperglycemia, the product of uncontrolled diabetes, leads to the appearance of vascular complications that can result in the premature death of diabetic patients. Consequently, pharmacological intervention with hypoglycemic agents could delay these complications and improve the quality of life of patients in the long term. Traditional Mexican medicine provides a great wealth of medicinal plants that are used for the treatment of type 2 diabetes, the most prevalent form of diabetes, accounting for nearly 90-95% of total cases. However, there is still a lack of studies that support their hypoglycemic effects, clarify their mechanisms of action, and report their long-term efficacy. Therefore, the aim of this study was to evaluate the chronic effects of the traditional extracts of some Mexican medicinal plants used by diabetic patients (Ageratina petiolaris (Moc. & Sessé ex DC.) R.M. King & H. Rob. (Asteraceae), Calea urticifolia (Mill.) DC. (Asteraceae), and Eryngium cymosum F.Delaroche (Apiaceae)) on hyperglycemia and hypertriglyceridemia. To achieve this goal, the aqueous extracts of these plants at their traditional doses were administered daily to streptozotocin-nicotinamide (STZ-NA) hyperglycemic Wistar rats for 42 days to assess their effects on nonfasting blood glucose (NFBG), glycated hemoglobin (HbA1c), and blood triglycerides (TG). The results showed that the A. petiolaris extract significantly reduced NFBG by 33% compared to its baseline (p = 0.0281). Besides, it prevented the increase in HbA1c by 2.63% (p = 0.0303) and diminished the AUC of TG (p = 0.0031) compared with the negative control. On the other hand, both C. urticifolia and E. cymosum prevented worsening of hyperglycemia by avoiding the significant increase in glucose levels seen in the negative control and the rise in HbA1c by 2.58% (p = 0.0156). These outcomes provide evidence for the first time of the antihyperglycemic effect of these Mexican medicinal plants, confirming their long-term efficacy in the control of chronic hyperglycemia.

4.
Plants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685869

RESUMO

Type 2 diabetes is a worldwide prevalent disease that is due to a progressive loss of adequate ß-cell insulin secretion, frequently against a background of insulin resistance. In Mexican traditional medicine, the therapeutic use of hypoglycemic plants to control the disease is a common practice among type 2 diabetic patients. In the present work, we examined the traditional use of the aerial parts of Eryngium longifolium and the rhizome of Alsophila firma, consumed by people use over the day (in fasting state) to control their blood glucose levels, therefore, we aimed to assess the acute hypoglycemic effect of both plants. First, basic phytochemical profiles of both plants were determined and, subsequently, acute toxicity tests were carried out. Then, in vivo hypoglycemic tests were performed in streptozotocin-nicotinamide (STZ-NA) induced hyperglycemic Wistar rats and finally the effect of the plants on three enzymes involved in glucose metabolism was assayed in vitro. Through HPLC-DAD chromatography, caffeic acid, chlorogenic acid, rosmarinic acid, isoflavones, and glycosylated flavonoids were identified in E. longifolium, while the possible presence of flavanones or dihydroflavonols was reported in A. firma. Both plants exhibited a statistically significant hypoglycemic effect, without a dose-dependent effect. Furthermore, they inhibited glucose 6-phosphatase and fructose 1,6-bisphosphatase in in vitro assays, which could be associated with the hypoglycemic effect in vivo. Thus, this study confirmed for the first time the traditional use of the aerial part of E. longifolium and the rhizome of A. firma as hypoglycemic agents in a hyperglycemic animal model. In addition, it was concluded that their ability to regulate hyperglycemia could involve the inhibition of hepatic glucose output, which mainly controls glucose levels in the fasting state.

5.
J Ethnopharmacol ; 279: 114339, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34166734

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eryngium cymosum F. Delaroche was detected as a traditional remedy against type 2 diabetes consumed by patients of Tlanchinol in the state of Hidalgo, Mexico. AIM OF THE STUDY: Assessing the hypoglycemic effect and safety of the traditional extract of E. cymosum and relating it to key glucose-lowering mechanisms both in fasting and postprandial state. MATERIALS AND METHODS: The aqueous extract of E. cymosum was subjected to HPLC analysis to identify its main components. Hyperglycaemic STZ-NA Wistar rats were administered with the extract to evaluate its effect on blood glucose levels and a possible dose-dependence. Afterward, it was evaluated in both pyruvate and maltose tolerance tests in STZ-NA rats to characterize its effect on gluconeogenesis and carbohydrate breakdown, two of the main mechanisms responsible for fasting and postprandial hyperglycaemia in type 2 diabetes patients. In addition, the inhibitory capacity of the extract was evaluated on key enzymes involved in gluconeogenesis and a-glucosidases. Moreover, insulin concentrations were measured in normoglycemic rats in both conditions to establish a link between the hypoglycaemic effect of the extract with insulin release and functioning. RESULTS: Caffeic acid (1), chlorogenic acid (2), and rosmarinic acid (3) were identified as the main constituents of the aqueous extract of E. cymosum, which exerted a hypoglycaemic effect in hyperglycaemic STZ-NA rats. It has a significant antihyperglycemic effect in the pyruvate tolerance test, and it was able to reduce the postprandial hyperglycaemia in maltose tolerance tests significantly. Moreover, it effectively reduced the activity of both gluconeogenic enzymes reaching almost 100% of inhibition, while it presented a modest 32% inhibition of aglucosidases. On the other hand, the extract decreased insulin levels after its oral administration in healthy rats in both nutritional states, without affecting normoglycemia in normal curves and reducing the postprandial peak in glucose load curves. CONCLUSIONS: The traditional consumed form of aerial parts of E. cymosum is safe and regulated glucose levels both in fasting and in postprandial state.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Eryngium/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Jejum , Gluconeogênese/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/isolamento & purificação , Insulina/sangue , México , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar
6.
Artigo em Inglês | MEDLINE | ID: mdl-33505497

RESUMO

The onset of type 2 diabetes (T2D) is a consequence of the progressive loss of adequate ß-cell insulin secretion, which frequently occurs under a background of insulin resistance. Currently, nearly 13 million Mexicans are living with diabetes. Moreover, due to poor socioeconomic conditions and the cultural idiosyncrasies of the Mexican population, the use of medicinal plants to treat T2D is a common practice in Mexico. In the Mexican state of Hidalgo, we found the traditional use of Calea urticifolia (CU) to treat this disease. To treat T2D, people drink an infusion made from the aerial part of the plant throughout the day. With the aim of investigating whether the infusion at a traditional dose produces a hypoglycemic effect in either the fasting or postprandial state, we measured the effect of the infusion in a hyperglycemic animal model (rats administered streptozotocin (STZ) and nicotinamide (NZ)) by conducting a glucose tolerance test and constructing a blood-glucose curve. We then analyzed whether the observed effect was related to the inhibition of glucose absorption in the gut or the inhibition of hepatic glucose output (HGO) in vivo and in vitro. Furthermore, we confirmed our findings by identifying the potential targets of the infusion via a network pharmacology analysis. Through high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC), we detected a number of compounds in the extract and identified two of them. The plant extract produced a highly significant hypoglycemic effect under fasting conditions and a weak hypoglycemic effect following glucose or sucrose challenge. Although the plant extract blocked only 20% of the alpha-glucosidase enzyme activity in vitro, in the pyruvate tolerance test (which measures the liberation of hepatic glucose), it significantly reduced glucose levels. Furthermore, in vitro, the extract diminished the activity of the glucose-6-phosphatase complex by 90%. In addition, by conducting TLC, we detected the presence of chlorogenic acid and rutin, which have been reported to block HGO. The results presented here provide evidence of the hypoglycemic effect of the traditionally used C. urticifolia extract and demonstrate that this effect is associated with both a reduction in glucose synthesis via gluconeogenesis due to the phytochemical composition of the extract and a slight blockage of glucose absorption in the gut.

7.
Front Pharmacol ; 12: 809994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002743

RESUMO

Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.

8.
Front Pharmacol ; 11: 215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194426

RESUMO

De novo hepatic glucose production or hepatic gluconeogenesis is the main contributor to hyperglycemia in the fasting state in patients with type 2 diabetes (T2D) owing to insulin resistance, which leads to at least twice as much glucose synthesis compared to healthy subjects. Therefore, control of this pathway is a promising target to avoid the chronic complications associated with elevated glucose levels. Patients with T2D in the rural communities of Mexico use medicinal plants prepared as infusions that are consumed over the day between meals, thus following this rationale (consumption of the infusions in the fasting state), one approach to understanding the possible mechanism of action of medicinal plants is to assess their capacity to inhibit hepatic glucose production. Furthermore, in several of these plants, the presence of phenolic acids able to block the enzyme glucose-6-phosphatase (G6Pase) is reported. In the present work, extracts of Ageratina petiolaris, Bromelia karatas, Equisetum myriochaetum, Rhizophora mangle, and Smilax moranensis, which are Mexican plants that have been traditionally used to treat T2D, were assayed to evaluate their possible hepatic glucose output (HGO) inhibitory activity with a pyruvate tolerance test in 18-h fasted STZ-NA Wistar rats after oral administration of the extracts. In addition, the in vitro effects of the extracts on the last HGO rate-limiting enzyme G6Pase was analyzed. Our results showed that four of these plants had an effect on hepatic glucose production in the in vivo or in vitro assays. A. petiolaris and R. mangle extracts decreased glucose output, preventing an increase in the blood glucose levels and sustaining this prevented increase after pyruvate administration. Moreover, both extracts inhibited the catalytic activity of the G6Pase complex. On the other hand, even though S. moranensis and B. karatas did not exhibit a significant in vivo effect, S. moranensis had the most potent inhibitory effect on this enzymatic system, while the E. myriochaetum extract only inhibited hepatic glucose production in the pyruvate tolerance test. Because of the traditional method in which diabetic patients use plants, hepatic glucose production inhibition seems to be a mechanism that partially explains the common hypoglycemic effect. However, further studies must be carried out to characterize other mechanisms whereby these plants can decrease HGO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...